Multiplicity Results for some Nonlinear¶Schrödinger Equations with Potentials
نویسندگان
چکیده
منابع مشابه
Multiplicity results for some nonlinear Schrödinger equations with potentials
(K1) K ∈ C(R), K is bounded and K(x) > 0 ∀ x ∈ R. One seeks solutions uε of (NLS) that concentrate, as ε→ 0, near some point x0 ∈ R (semiclassical standing waves). By this we mean that for all x ∈ R \ {x0} one has that uε(x) → 0 as ε→ 0. When K equals a positive constant, say K(x) ≡ 1, (NLS) has been widely investigated, see [2, 3, 10, 12, 15, 16, 18] and references therein. Moreover, the exist...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Existence and Multiplicity Results of Homoclinic Solutions for the DNLS Equations with Unbounded Potentials
and Applied Analysis 3 DNLS equation is one of the most important inherently discrete models, which models many phenomena in various areas of applications see 2–4 and reference therein . For example, in nonlinear optics, DNLS equation appears as a model of infinite wave guide arrays. In the past decade, the existence and properties of mobile discrete solitons/breathers in DNLS equations have be...
متن کاملSome Results for Subelliptic Equations
In this paper, we consider the principal eigenvalue problem for Hormander’s Laplacian on R, and we find a comparison principle for such principal eigenvalues. We also study a related semi-linear sub-elliptic equation in the whole R and prove that under a suitable condition, we have infinite many positive solutions of the problem.
متن کاملGlobal Existence Results for Nonlinear Schrödinger Equations with Quadratic Potentials
We prove that no finite time blow up can occur for nonlinear Schrödinger equations with quadratic potentials, provided that the potential has a sufficiently strong repulsive component. This is not obvious in general, since the energy associated to the linear equation is not positive. The proof relies essentially on two arguments: global in time Strichartz estimates, and a refined analysis of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2001
ISSN: 0003-9527,1432-0673
DOI: 10.1007/s002050100152